VB: How do you start addressing the notion that this generates too much data? Potentially you have to synthesize what goes into the data center and what’s useful to have, given how many hours of video these drones can generate.
Nanduri: The notion of too much data — we always wonder about it, but it never seems to me like there’s enough data. [laughs] We just need to know how to use it. I’m constantly surprised by how much more data we can process and bring in to improve productivity.
Let me give you the principles. Once we have the technology, there are a few other pieces. I break this down into two phases. One is, you have to consider regulation and what’s allowed, but I tend to look more at where this goes from here. Drones are getting better and better. The key aspect is how you automate the process, where you have the human on the loop — monitoring and taking precautions — but not in the loop. You don’t need a human to do everything, every task that’s part of the drone workflow.
To create that automation, the systems need to get smarter. A lot of the tools already exist for things like automatic takeoff, automatic landing, waypoints, GPS coordination. You can bring collision avoidance to it. They have some redundancies built in. You want to make sure there’s no single point of failure in the system. What happens if a rotor fails, or a communication link fails, or the compass is corrupted by magnetic fields? You think of it from the perspective of bringing redundancy and safety features in. Then you want to think about the point of interest. How do I create the flight plan? How do I adjust for the terrain? How do I bring geo-fences in?
AI Weekly
The must-read newsletter for AI and Big Data industry written by Khari Johnson, Kyle Wiggers, and Seth Colaner.
Included with VentureBeat Insider and VentureBeat VIP memberships.
You start to think about an automated system, then you think about acquiring the data, capturing that information. The sensors can change. We’ve talked about different payloads. Some of it may be thermal. Some of it may be high-resolution imagery. Some of it may be video, or even multispectral for agriculture use cases, or a methane sensor for finding gas leaks and things like that. Automating that workflow so it becomes efficient means a whole bunch of work to be done. The systems themselves are getting more stable and reliable, but if you look at where we need to go, it’s a matter of bringing that into a safe operational process.
A lot of activity is going on in that area. Our focus is on making sure that the one-click inspection approach can be realized. Then it has to work with what the regulations allow. Today it’s still visual line of sight. You need to fly below 400 feet. But as the safety capabilities get more and more demonstrated — NASA is working on UTM, Unmanned Traffic Management. Those principles will help us go beyond visual line of sight and give us a framework to go fully autonomous.
We’re innovating a lot around that workflow. One technology you might have seen is the light show, where we fly 500 drones. We automated that whole workflow — charging, recharging, data communications, everything controlled through a computer with a single operator. It’s amazing for people to experience. We flew at Disney. We’ve done more than 90 operational flights in public, outside of all the testing. Two shows every night, except on a couple of days when we had stormy weather.
VB: That was a pretty amazing video.
Nanduri: More than the video, I don’t know if you’ve heard any anecdotes about it, but it was packed. People were waiting for the show every night. They’d surround that area by the waterfront at Disney Springs. It was amazing to see the audience reaction. People had never seen anything like it. Having a revolving Christmas tree in the sky — the initial experience for us was just a four-minute show. We could do longer. But it was a learning experience, both for Disney in creating animation with it and for us gaining operational experience over such a long period.
Since then, we’ve seen a lot of interest in how this can be applied for all kinds of shows. The fundamental difference — there’s a lot of comparisons to fireworks. But with fireworks you have pollution. They’re obviously not reusable. The reusability here is a great value prop. We can give artists a whole new kind of canvas and paint now. With fireworks, they don’t have the flexibility.
VB: What was some the key learning on that project?
Nanduri: From the technology side, flying 500 drones is about control theory. How do you fly these without having them collide into each other? If you think of this as a robotics problem, or an autonomous flight problem, that aspect is a control theory problem. It’s not easy. It looks very elegant and simple, but getting that result out of software is hard. At the end of the day you’re actually controlling machines.
We had to design the whole concept with that in mind, and that was the breakthrough. We went from flying 100 drones last year, with technology that never could have scaled, to breaking the 500 record this past year. Now, to use it for something like an animation show, the creative artists can use 3D tools. They use Maya and other mechanics to create their expressions. We completely automated the interface to take that and program it into what you can call the drone flight line. All that is automated. We built a whole software stack for it, including being able to simulate in advance. It’s the end-to-end experience in terms of how we can operationalize something like this, not just showing a one-time demonstration.
Now the technology scales, which is where it ties back to commercial applications. I talked about this automation process. How do you scale and save costs? It’s about how you parallelize things. How can I do inspections with multiple drones? How can I do search and rescue where you streamline the fleet management to have thermal cameras, other kinds of cameras looking for people at night? There’ll be a day when we can apply this technology to save lives. At that point, the public perception of value quickly goes up in terms of new technology adoption.